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Abstract A fullerene graph is a planar cubic graph whose all faces are pentagonal
and hexagonal. The structure of cyclic edge-cuts of fullerene graphs of sizes at most
6 is known. In the paper we study cyclic 7-edge connectivity of fullerene graphs, dis-
tinguishing between degenerate and non-degenerate cyclic edge-cuts, regarding the
arrangement of the 12 pentagons. We prove that if there exists a non-degenerate cyclic
7-edge-cut in a fullerene graph, then the graph is a nanotube unless it is one of the two
exceptions presented. We determined that there are 57 configurations of degenerate
cyclic 7-edge-cuts, and we listed all of them.

Keywords Fullerene · Fullerene graph · Cyclic edge-connectivity · Cyclic edge-cuts

1 Introduction

Mathematicians adopted the notion of fullerenes and defined the fullerene graphs as the
plane cubic 3-connected graphs with only pentagonal and hexagonal faces. Nanotubes
are members of the fullerene structural family. They are cylindrical in shape with the
ends typically capped with a hemisphere of the fullerene structure. Nanotubes with the
ends left open, so called open-ended nanotubes, are also interesting objects, see e.g. [9].
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Došlić proved that fullerene graphs are cyclically 4-edge connected [2] and cycli-
cally 5-edge connected [3]. In 2006, Qi and Zhang [7] presented a simplified proof
for cyclic 5-edge connectivity mending a small oversight in Došlić’s proof. They also
proved that fullerenes are cyclically 5 connected. The cyclic edge-connectivity of a
fullerene graph cannot exceed 5, since it contains 12 pentagons, thus, there are at least
twelve cyclic 5-edge-cuts—formed by the edges pointing outwards of each pentag-
onal face. There are also cyclic 6-edge-cuts formed by the edges pointing outwards
of each hexagonal face. These cyclic 5- and 6-edge-cuts will be called trivial. Kardoš
and Škrekovski [4] characterized fullerene graphs with non-trivial 5- and 6-edge-cuts,
and independently the fullerenes with non-trivial 5-edge-cuts were characterized by
Kutnar and Marušič [6].

An edge-cut of a connected graph G is a set of edges C ⊆ E(G) such that G − C
is disconnected. A graph G is k-edge-connected if G cannot be separated into two
components by removing less than k edges. An edge-cut C of a graph G is cyclic if
each component of G − C contains a cycle. A graph G is cyclically k-edge-connected
if G cannot be separated into at least two components, each containing a cycle, by
removing less than k edges.

A cyclic edge-cut C of a fullerene graph G is non-degenerate, if both components
of G − C contain precisely six pentagons. Otherwise, C is degenerate. Obviously, the
trivial cyclic edge-cuts are degenerate.

There is a family of fullerene graphs, which have many non-degenerate cyclic
edge-cuts—the nanotubes. A fullerene graph is a nanotube, if it can be divided into a
cylindrical part containing only hexagons, and two caps, each containing six pentagons
and maybe some hexagons. Moreover, at least one of the pentagons should have an
edge incident to the outer face of a cap. The cylindrical part should have the following
structure: It contains a ring of hexagons h1, h2, . . . , h p such that after unfolding it
back into the hexagonal grid, there are two unit vectors a1 and a2 forming a 60◦ angle
such that each hi − hi−1 is either a1 or a2 for i = 1, . . . , p, where h0 = h p (here
the hexagons are identified with their centers). In this case, the cylindrical part is an
open-ended nanotube of type (p1, p2), where p j denotes the number of occurrences
of a j , j = 1, 2. The pair (p1, p2) of coefficients in the equation r = p1a1 + p2a2
fully determines the type of the nanotube. It is easy to see that the vectors a1 and a2
can always be chosen in such a way that p1 ≥ p2, which we assume in the sequel.
See Fig. 1 for an illustration. We say that p1 + p2 is the width of the nanotube.

Fig. 1 An example of a
nanotube of type (6, 2)
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Fig. 2 The buckyball is the smallest nanotube of type (5, 5)

The nanotubes of types (n, 0) are called zigzag, those of types (n, n) are called
armchair (both types have mirror symmetry), the others are chiral (without mirror
symmetry). In the light of this definition, also the buckyball C60 can be viewed as the
first in the series of nanotubes of type (5, 5) with a single layer of hexagons in the
cylindrical part, see Fig. 2.

The nanotubes that are interesting in material science usually have the length-to-
diameter ratio very large. But in many other fullerenes the nanotube-like structure
can be found. We say that two non-degenerate cyclic edge-cuts are parallel if both
of them induce the two partitions containing the same six pentagons in each, and
the corresponding rings of hexagons do not share a face. Such a ring of hexagons
is called a layer, and the maximal number of parallel layers is the lenght of a nano-
tube. Thus the cylindrical part of a nanotube is comprised of several face-disjoint
layers.

It is easy to see that the ring of hexagons induces a non-degenerate cyclic edge-cut
in a nanotube. In [4] it was proven that nanotubes are the only graphs having non-
degenerate cyclic 5- and 6-edge-cuts, however, there exist fullerene graphs that are not
nanotubes and have non-degenerate cyclic k-edge-cut, for some k ≥ 7. In the paper
we consider non-degenerate cyclic 7-edge-cuts and prove that there exist precisely
two fullerenes with non-degenerate cyclic 7-edge-cut, which are not nanotubes.

An important notion in this paper is a cut-vector. Let G be a fullerene graph and C
a k-edge cut in G, and let H be one of the two components of the graph G − C . Let
e1 = v1w1, e2 = v2w2, . . . , ek = vkwk be the edges of C enumerated as they appear
cyclically around H . We assume that vi ’s are in H . Let αi be the length of the facial
subwalk from vi to vi+1 minus 1 (notice that vk+1 = v1). Observe that αi = −1 if
vi = vi+1.

We name the sequence [α1, α2, . . . , αk] a cut-vector v(C) (regarding H ). It is easy
to see that the coordinates αi in fullerenes could only have values −1, 0, 1, 2 or 3,
since each face of G is of size 5 or 6. For instance, the cut-vector of the configuration
6D02 from Fig. 4 is [−1, 1, 0, 0, 0, 1].
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Observe that each cyclic edge-cut has two cut-vectors associated with each of the
components of G − C . Let [α1, α2, . . . , αk] and [β1, β2, . . . , βk] be the two cut-
vectors corresponding to a cyclic edge-cut C . If C is non-degenerate, only hexa-
gons are incident with the edges of a cut, hence, αi + βi = 2 for i = 1, 2, . . . , k.
Therefore, the second cut-vector is determined by the first one. Moreover, also the
sum of cut-vector’s coordinates has a nice property, which is given in the following
lemma:

Lemma 1 Let C be a non-degenerate k-cut in a fullerene graph G, and let α =
[α1, α2, . . . , αk] be one of its two cut-vectors. Then, α1 + α2 + · · · + αk = k.

To prove the lemma above, we use an extension of a result from [4, Lemma 1]:

Lemma 2 Let C be an edge-cut in a fullerene graph G and H a component of G −C.
Let n1 and n2 be the numbers of vertices of degree one and two, f5 the number of
pentagons, and l the size of the outer face of H. Then, 6 − f5 = 4n1 + 2n2 − l.

Proof Let m be the number of edges, n3 the number of 3-vertices, and f6 the number
of hexagons of H . Then

n1 + 2n2 + 3n3 = 2m = 5 f5 + 6 f6 + l.

Using Euler’s formula, we also have that

n1 + n2 + n3 + f5 + f6 + 1 − m − 2 = 0.

Putting these two equations together we infer

6(n1 + n2 + n3 + f5 + f6 + 1 − m − 2) = 0

(2n1 + 4n2 + 6n3 − 4m) + (5 f5 + 6 f6 + l − 2m) + 4n1 + 2n2 + f5 − l − 6 = 0

4n1 + 2n2 − f5 − l − 6 = 0 ,

and finally

4n1 + 2n2 − l = 6 − f5. ��

Proof of Lemma 1 Let H be the component of G − C that corresponds to α. Then H
has n1 1-vertices and n2 2-vertices such that 2n1 +n2 = k. It also has six 5-faces. The
length of its outer face is

l = k +
k∑

i=1

αi = 2n1 + n2 +
k∑

i=1

αi .

On the other hand, by Lemma 2 we have

l = 4n1 + 2n2,

123



J Math Chem (2010) 47:771–789 775

and hence

k∑

i=1

αi = 2n1 + n2 = k,

which proves the lemma. ��
The type of a cut-vector α is the vector obtained from α after omitting the coor-

dinates with value 1. For an example, the type of the cut-vector [2, 1, 1, 0, 1, 2, 0] is
[2, 0, 2, 0]. If no two consecutive coordinates of the cut-vector’s type have the same
value, we say that the cut is nanotubical. The notion nanotubical derives from the
fact, that the two same consecutive coordinates imply that there are all three direction
vectors contained in the cut, and we know that the fullerene is a nanotube if and only
if there exists a cut containing at most two direction vectors. Moreover, if the cut is
nanotubical, each subsequence of the form 2, 1, . . . , 1, 0 of the cut-vector containing
k 1’s corresponds to k + 1 times the unit vector a1, and each subsequence of the form
0, 1, . . . , 1, 2 of the cut-vector containing � 1’s corresponds to � + 1 times the unit
vector a2. Therefore, we can use the following characterization:

Proposition 1 A fullerene graph is a nanotube if and only if it has a nanotubical cut.
Moreover, if the nanotube is of type (p1, p2), then the cut has size p1 + p2.

Below we state some known results regarding the non-trivial cyclic 5- and 6-edge-cuts.
Denote by Gk the fullerene graph comprised of two caps formed by six pentagons,
and k layers of hexagons, see Fig. 3.

Theorem 1 A fullerene graph has non-trivial cyclic 5-edge-cut if and only if it is
isomorphic to the graph Gk for some integer k ≥ 1.

As an immediate corollary we obtain that all non-trivial cyclic 5-edge-cuts in ful-
lerene graphs are non-degenerate. Unlike cyclic 5-edge-cuts, there exist degenerate
cyclic 6-edge-cuts, which are not trivial.

Fig. 3 The graphs Gk are the
only fullerene graphs with
non-trivial cyclic 5-edge-cuts
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6D01 6D02 6D03 6D04

6D05 6D06 6D07

Fig. 4 Degenerate cyclic 6-edge-cuts

Theorem 2 There exist precisely seven non-isomorphic graphs that can be obtained
as components of degenerate cyclic 6-edge-cuts with less than six pentagons (see
Fig. 4). Moreover, the graphs with i pentagons are unique for i = 0, 1, 2, 3, 4. There
are exactly two graphs with 5 pentagons on the other hand.

Non-degenerate cyclic 6-edge-cuts are, similarly as cyclic 5-edge-cuts, nanotubical.
In [4] the following characterization is given:

Theorem 3 A fullerene graph has non-degenerate cyclic 6-edge-cut if and only if it
is a nanotube of type (p1, p2), where

(a) p1 + p2 = 6; or
(b) p1 = 5, p2 = 0, with at least 2 layers of hexagons.

2 Degenerate cyclic 7-edge-cuts

In this section we list the degenerate cyclic 7-edge-cuts. There are 57 non-isomorphic
graphs that can be obtained as components of degenerate cyclic 7-edge-cuts with less
then 6 pentagons. To obtain the configurations we used the reverses of operations O1,
O2 and O3 presented in [4]. Each of the three operations Oi , i ∈ {1, 2, 3}, modifies
the cyclic k-edge-cut C into another cyclic edge-cut Ci . Below a brief description of
the operations is given (see also Fig. 5).

(O1) If a component H contains a vertex of degree one, then using (O1) one can
modify the k-edge-cut C into a (k − 1)-edge-cut C1.

(O2) If a component H contains two adjacent vertices of degree two, then using (O2)

one can modify the k-edge-cut C into a k-edge-cut C2.
(O3) If the vertices of the outer face of H are consecutively of degree 2 and 3, then

using (O3) one can modify the k-edge-cut C into a k-edge-cut C3.

Using the three operations, all cyclic edge-cuts in a fullerene could be constructed,
see [4, Theorem 1]. Note that the operation O3 can be applied only if there are six
pentagons in the configuration H , therefore when reconstructing degenerate cyclic
edge-cuts from the trivial ones, it is never used. In Fig. 6, an example of constructing a
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H
C HC

H

C

↓ (O1) ↓ (O2) ↓ (O3)
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C1 H2C2

H3
C3

Fig. 5 The operations O1, O2 and O3
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(O2)
←−
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↑ (O2)

(O2)
−→

(O2)
−→

(O2)
−→

Fig. 6 An example of construction

degenerate cyclic 7-edge-cut is presented, and in Fig. 7 we listed the degenerate cyclic
7-edge-cuts.

In Table 1 for each configuration depicted in Fig. 7 we list the number of pentagonal
and hexagonal faces (denoted by f5 and f6), the number of vertices (denoted by v),
the cut-vector, and the configurations that arise when applying operations O1, O2 and
the inverse O−1

2 .

3 Non-degenerate cyclic 7-edge-cuts

In this section, we consider the non-degenerate cyclic 7-edge-cuts. We prove that all
non-degenerate cyclic 7-edge-cuts are contained in fullerene graphs which are nano-
tubes, with only two exceptions. There exist precisely two fullerene graphs, which have
non-degenerate cyclic 7-edge-cuts and that are not nanotubical. We also characterize
the types of nanotubes in which non-degenerate cyclic 7-edge-cuts exist.

Note that nanotubes with p1+ p2 < 5 do not exist due to cyclic 5-edge-connectivity
of fullerenes. Regarding nanotubes with p1 + p2 = 5, it was already proven in [4] that
only nanotubes of type (5, 0) exist, moreover, the caps are unique, see Theorem 1.

On the other hand, there are more possible nanotube types for p1 + p2 = 6. If
we look for minimal caps, for type (6, 0) there exist five different caps, while for
types (5, 1), (4, 2), and (3, 3) the minimal caps are unique, see Fig. 8. These are the
caps which cannot be made smaller without introducing denegerated cuts. This is the
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D01 D02 D03 D04 D05 D06 D07 D08 D09 D10

D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

D21 D22 D23 D24 D25 D26 D27 D28

D29 D30 D31 D32 D33 D34 D35 D36

D37 D38 D39 D40 D41 D42 D43

D44 D45 D46 D47 D48 D49 D50

D51 D52 D53 D54 D55 D56 D57

Fig. 7 Degenerate cyclic 7-edge-cuts

shortest list of caps such that every other cap in a nanotube with p1 + p2 = 6 contains
(precisely) one of them as a subgraph. If you want to preserve the size of the cut,
the caps for the type (6, 0) can be extended only using O−1

3 , meaning adding whole
layers of hexagons, since there are no 2’s in the corresponing cut-vectors. Therefore,
there are no other cups for this type of nanotubes. The three caps of the types where
p2 > 0 can be extended only using O−1

2 , meaning adding one hexagon in a step,
since there is always at least one 2 in the corresponing cut-vector. Applying O−1

2 in the
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Table 1 Degenerate cyclic 7-edge cuts

Cut f5 f6 v Cut-vector O1 O2 O−1
2

D01 0 1 7 [−1, 1, 0, 0, 0, 0, 1] 6D01 – D05

D02 1 0 7 [−1, 0, 1, 0, 0, 0, 2] 6D02 – D05, D06

D03 1 0 7 [−1, 1, 0, 0, 1,−1, 2] 6D02 – D05, D06

D04 1 0 7 [−1, 1, 0, 1,−1, 1, 1] 6D02 – D06, D07

D05 1 1 9 [0, 0, 0, 1, 0, 0, 1] – D01, D02, D03 D08

D06 2 0 9 [−1, 1, 0, 1, 0, 0, 2] 6D03 D02, D03, D04 D08, D09, D10

D07 2 0 9 [−1, 1, 1, 0, 0, 1, 1] 6D03 D04 D09, D10

D08 2 1 11 [0, 0, 1, 0, 1, 0, 1] – D05, D06 D11, D12

D09 3 0 11 [0, 0, 1, 1, 0, 0, 2] – D06, D07 D11, D13

D10 3 0 11 [−1, 1, 1, 0, 1, 0, 2] 6D04 D06, D07 D12, D13, D14, D15

D11 3 1 13 [0, 1, 0, 1, 0, 1, 1] – D08, D09 D16, D17

D12 3 1 13 [0, 0, 1, 1, 0, 1, 1] – D08, D10 D17, D18

D13 4 0 13 [0, 0, 2, 0, 1, 0, 2] – D09, D10 D17, D19

D14 4 0 13 [−1, 2, 0, 1, 1, 0, 2] 6D05 D10 D18, D20

D15 4 0 13 [−1, 1, 1, 1, 0, 1, 2] 6D05 D10 D18, D19, D20, D21, D22

D16 4 1 15 [0, 1, 1, 0, 1, 1, 1] – D11 D23, D24, D25

D17 4 1 15 [0, 1, 0, 1, 1, 0, 2] – D11, D12, D13 D24, D25, D26, D27

D18 4 1 15 [0, 0, 1, 1, 1, 0, 2] – D12, D14, D15 D27, D28, D29, D30

D19 5 0 15 [0, 0, 2, 1, 0, 1, 2] – D13, D15 D27

D20 5 0 15 [−1, 2, 0, 2, 0, 1, 2] 6D06 D14, D15 D29, D30, D31

D21 5 0 15 [−1, 1, 2, 0, 1, 1, 2] 6D06 D15 D30, D32

D22 5 0 15 [−1, 1, 1, 1, 1, 0, 3] 6D06 D15 –

D23 5 1 17 [0, 1, 1, 1, 1, 0, 2] – D16 D34

D24 5 1 17 [0, 1, 1, 1, 0, 1, 2] – D16, D17 D35

D25 5 1 17 [0, 1, 1, 0, 2, 0, 2] – D16, D17 D36

D26 4 2 17 [0, 1, 1, 0, 1, 1, 1] – D17 D35, D36, D37

D27 5 1 17 [0, 1, 0, 2, 0, 1, 2] – D17, D18, D19 D37, D38

D28 4 2 17 [0, 1, 0, 1, 1, 1, 1] – D18 D38, D39, D40

D29 5 1 17 [0, 0, 2, 0, 2, 0, 2] – D18, D20 D40, D41

D30 5 1 17 [0, 0, 1, 2, 0, 1, 2] – D18, D20, D21 D40, D42

D31 5 1 17 [−1, 2, 1, 0, 1, 1, 2] 6D07 D20 D41, D42

D32 5 1 17 [−1, 2, 0, 1, 1, 1, 2] 6D07 D21 D42, D43

D33 5 1 17 [−1, 1, 1, 1, 1, 1, 2] 6D07 – D43

D34 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D23 –

D35 5 2 19 [0, 1, 1, 1, 1, 0, 2] – D24, D26 D44

D36 5 2 19 [0, 1, 1, 1, 0, 1, 2] – D25, D26 D45

D37 5 2 19 [0, 1, 1, 0, 2, 0, 2] – D26, D27 D46

D38 5 2 19 [0, 1, 1, 0, 1, 1, 2] – D27, D28 D46

D39 5 2 19 [0, 1, 1, 1, 1, 1, 1] – D28 –

D40 5 2 19 [0, 1, 0, 1, 2, 0, 2] – D28, D29, D30 D47, D48
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Table 1 continued

Cut f5 f6 v Cut-vector O1 O2 O−1
2

D41 5 2 19 [0, 0, 2, 1, 0, 1, 2] – D29, D31 D48

D42 5 2 19 [0, 0, 2, 0, 1, 1, 2] – D30, D31, D32 D48, D49

D43 5 2 19 [0, 0, 1, 1, 1, 1, 2] – D32, D33 D49

D44 5 3 21 [0, 1, 1, 1, 1, 1, 1] – D35 –

D45 5 3 21 [0, 1, 1, 1, 1, 0, 2] – D36 D50

D46 5 3 21 [0, 1, 1, 1, 0, 1, 2] – D37, D38 D51

D47 5 3 21 [0, 1, 1, 0, 1, 2, 1] – D40 D52

D48 5 3 21 [0, 1, 0, 2, 0, 1, 2] – D40, D41, D42 D52, D53

D49 5 3 21 [0, 1, 0, 1, 1, 1, 2] – D42, D43 D53

D50 5 4 23 [0, 1, 1, 1, 1, 1, 1] – D45 –

D51 5 4 23 [0, 1, 1, 1, 1, 0, 2] – D46 D54

D52 5 4 23 [0, 1, 1, 0, 2, 0, 2] – D47, D48 D55

D53 5 4 23 [0, 1, 1, 0, 1, 1, 2] – D48, D49 D55

D54 5 5 25 [0, 1, 1, 1, 1, 1, 1] – D51 –

D55 5 5 25 [0, 1, 1, 1, 0, 1, 2] – D52, D53 D56

D56 5 6 27 [0, 1, 1, 1, 1, 0, 2] – D55 D57

D57 5 7 29 [0, 1, 1, 1, 1, 1, 1] – D56 –

(6, 0) (6,0) (6, 0) (6, 0) (6, 0)

(5,1) (4, 2) (3, 3)

Fig. 8 The (minimal) caps of (p1, p2)-nanotubes, where p1 + p2 = 6

described way does not modify the type (p1, p2) of nanotubical cap. This way, we can
find five more caps for nanotubes of type (5, 1) and seven more caps for nanotubes
of types (4, 2) and (3, 3). See Fig. 9 for an illustration. Thus, there are altogether
5 + 6 + 8 + 8 = 27 caps.

Theorem 4 A fullerene graph G has a non-degenerate cyclic 7-edge-cut if and only
if it is a nanotube of type (p1, p2) such that
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O2

−→
O2

−→
O2

−→ (5 ,1)

O2

−→
O2

−→
O2

−→ (4 ,2)

O2

−→
O2

−→
O2

−→ (3 ,3)

Fig. 9 All other caps of the nanotubes with p1 + p2 = 6 and p2 > 0 are derived from the minimal ones
using O−1

2

(5,0) (6,0) (4,2) (3,3)

Fig. 10 The only four nanotubical fullerenes with p1 + p2 ≤ 6 not having a non-degenerate cyclic
7-edge-cut

Fig. 11 The only two non-nanotubical fullerenes with a non-degenerate cyclic 7-edge-cut

(a) p1 + p2 = 7; or
(b) p1 + p2 ≤ 6, and G is not isomorphic to one of the four graphs depicted in

Fig. 10;

unless G is isomorphic to one of the two graphs depicted in Fig. 11.
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Fig. 12 The cap of a nanotube
of type (5, 1) with a
non-degenerate cyclic
7-edge-cut

Fig. 13 The two smallest nanotubes of types (4, 2) (on the top), and (3, 3) (at the bottom)

Proof It is easy to see that both graphs shown in Fig. 11 contain non-degenerate cyclic
7-edge-cuts.

Suppose now G is a nanotubical fullerene of type (p1, p2). We do not need to
consider nanotubes with p1 + p2 ≥ 8 here, since in the second part of the proof we
conclude that if a fullerene graph contains a non-degenerate cyclic 7-edge-cut and it
is nanotubic, then its width is at most 7.

In nanotubes with p1 + p2 = 7, simply the edges in the cylindrical part can be used
to obtain a cyclic 7-edge-cut.

Let p1 + p2 = 6. We consider nanotubes of types (5, 1), (4, 2), (3, 3), and (6, 0)

separately. The nanotubes of type (5, 1) have uniquely defined caps, which contain
a hexagon, so all such nanotubes have a configuration shown in Fig. 12, where a
non-degenerate cyclic 7-edge-cut can be found.

On the other hand, the unique minimal caps of nanotubes of types (4, 2) and (3, 3)

do not contain any hexagonal faces. So there exist nanotubes of such types that do
not have non-degenerate cyclic 7-edge-cut. In fact for each type only the smallest
nanotube is such, while all others have it. In Fig. 13, the smallest two nanotubes of
each type are presented.

It remains to consider the nanotubes of type (6, 0). There are five possible caps
for this type, see Fig. 8. Only the first cap does not contain a hexagonal face incident
with edges of the cut, so the nanotubes with both such caps need at least two layers
of hexagons to obtain a non-degenerate cyclic 7-edge-cut. In all other configurations
there are at least two edges in the cap that are not adjacent to a pentagonal face (the
edges of cap’s hexagon), and can be elements of the cut.

If p1 + p2 = 5 then p1 = 5 and p2 = 0. Recall that there is a unique cap for such
a nanotube. Now, consider the cylindrical part of the nanotube with only one layer of
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=⇒

Fig. 14 If the cut-vector of a k-cut contains −1, we can change it into a (k − 1)-cut

Table 2 All possible cut-vectors that arise from non-nanotubical cut types

[2, 2, 2, 0, 0, 0] [2, 2, 0, 2, 0, 0] [2, 2, 0, 0]
[2, 2, 2, 1, 0, 0, 0] [2, 1, 2, 0, 2, 0, 0] [2, 2, 1, 1, 1, 0, 0], [2, 2, 1, 1, 0, 0, 1]
[2, 1, 2, 2, 0, 0, 0] [2, 2, 1, 0, 2, 0, 0] [2, 1, 2, 1, 1, 0, 0], [2, 1, 2, 1, 0, 0, 1]

[2, 2, 0, 1, 2, 0, 0] [2, 1, 1, 2, 1, 0, 0], [2, 1, 2, 1, 0, 1, 0]
[2, 2, 0, 2, 0, 0, 1] [2, 1, 1, 1, 2, 0, 0], [2, 1, 1, 2, 0, 1, 0]

hexagons. The only edges not adjacent to pentagons are the edges between hexagonal
faces. There are only five such edges, thus a cyclic 7-edge-cut could not be obtained.
On the other hand, having two or more layers, the edges between layers could be used
to obtain the cut of size 7.

Now, we will prove the other direction. Let G be a fullerene graph and C a non-
degenerate cyclic 7-edge-cut in G. Let H be one of the components of graph G − C .
If C is nanotubical, then by the definition G is a nanotube with p1 + p2 = 7.

Suppose that C is a non-nanotubical non-degenerate 7-edge cut. Consider the cut-
vector of C . If there is a −1, it corresponds to a vertex of degree 1 in one of the
components; anytime the cut-vector looks like [. . . , a,−1, b, . . . ], if we remove the
vertex from the component, we get a non-degenerate cyclic 6-edge cut with the cut-
vector [. . . , a − 1, b − 1, . . . ], see Fig. 14 for an illustration. By Theorem 3, it is
contained in a nanotube, moreover, if we insert the removed vertex back, we get a
non-degenerate 7-edge-cut in the nanotube. If the cut-vector contains any 3 as a coor-
dinate, the complement must contain −1, since the cut is non-degenerate. So we apply
the previous argument on the other component.

Therefore, we deal only with cut-vectors whose coordinates are 0’s, 1’s and 2’s.
Then, due to the definition, we have at least two consecutive 0’s or 2’s. So, the type
of the cut-vector is one of the following three: [2, 2, 2, 0, 0, 0], [2, 2, 0, 2, 0, 0] or
[2, 2, 0, 0]. Table 2 lists all possible cut-vectors (up to symmetry) which could arise
from these types.

Now, we will consider each of the cut-vectors separately and prove that any cut
with such a cut-vector is either:

• a part of a nanotube with p1 + p2 ≤ 7; or
• a part of the graphs depicted in Fig. 11; or
• a part of a configuration which is non-realizable.

This analysis will establish the theorem. Notice that the cuts are depicted with the
dotted lines in figures that follow.

[2,2,2,1,0,0,0]: Consider the configuration shown in Fig. 15. Notice that the face A
cannot be pentagonal. Thus it is of length 6, and we obtain a non-degenerate 5-edge-cut
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Fig. 15 The component
associated with the cut-vector
[2, 2, 2, 1, 0, 0, 0] A

[2 ,2 ,2 ,1 ,0 ,0 ,0]-cut

=⇒

[2 ,2 ,0 ,0 ,1]-cut

Fig. 16 The component
associated with the cut-vector
[2, 1, 2, 2, 0, 0, 0] A

[2 ,1 ,2 ,2 ,0 ,0 ,0]-cut

=⇒

[2 ,1 ,0 ,1 ,1]-cut

A

[2, 1, 2, 0, 2 ,0, 0]-cut

=⇒

[2, 0, 1, 0, 1, 1]-cut

or

[2, 0, 1, 1, 1, 1]-cut

Fig. 17 The component associated with the cut-vector [2, 1, 2, 0, 2, 0, 0]

with a cut-vector [2, 2, 0, 0, 1]. But by Theorem 1 it follows that such a configuration is
non-realizable, since the only cut-vector of non-degenerate 5-edge-cut is [1, 1, 1, 1, 1].

[2,1,2,2,0,0,0]: Consider the configuration shown in Fig. 16. Similarly as in the case
above, A must be of length 6. We obtain a non-degenerate 5-edge-cut with a cut-vector
[2, 1, 0, 1, 1] and Theorem 1 implies that such a configuration is non-realizable.

[2,1,2,0,2,0,0]: Consider the size of the face A from Fig. 17. If A is pentago-
nal, we obtain a degenerate 6-edge-cut with the cut-vector [2, 0, 1, 0, 1, 1]. Such a
configuration is non-realizable by Theorem 2, since the cut-vectors of degenerate 6-
edge-cuts with a component containing five pentagons are only [2, 0, 1, 1, 1, 0] and
[0, 1, 1, 1, 1, 1]. On the other hand, if A is hexagonal, we obtain a non-degenerate
6-edge-cut with the cut-vector [2, 0, 1, 1, 1, 1], which is nanotubical; by Theorem 3
it occures in a nanotube with p1 + p2 ≤ 6. It is easy to see that it is contained in a
nanotube of type (5, 1).

[2,2,1,0,2,0,0]: In this case the size of the face A from Fig. 18, is considered.
If it is of size five, the configuration is non-realizable, since a degenerate 6-edge-
cut with the cut-vector [2, 1, 0, 1, 0, 1] is obtained. There is no such a degener-
ate cut according to Theorem 2. If A is hexagonal, we obtain a cut with the cut-
vector [2, 1, 0, 1, 1, 1], which is nanotubical; it is contained in a nanotube of type
(4, 2). Since the original cut is non-degenerate, the six hexagons cut by the new
6-edge-cut are not surrounded by pentagons only. Therefore, the graph is not the
exceptional one shown in Fig. 10.

[2,2,0,1,2,0,0]: Similarly as in the two cases above the size of the face A from Fig. 19
is taken in consideration. For A being pentagonal we once again obtain a non-realiz-
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A

[2,2,1,0,2,0,0]-cut

=⇒

[2,1,0,1,0,1]-cut

or

[2,1,0,1,1,1]-cut

Fig. 18 The component associated with the cut-vector [2, 2, 1, 0, 2, 0, 0]

A

[2 ,2 ,0 ,1 ,2 ,0 ,0]-cut

=⇒
[2 ,0 ,1 ,1 ,0 ,1]-cut

or

[2 ,0 ,1 ,1 ,1 ,1]-cut

Fig. 19 The component associated with the cut-vector [2, 2, 0, 1, 2, 0, 0]

A

[2,2,0,2,0,0,1]-cut

=⇒

[2,2,0,1,0,0]-cut

or

[2,2,0,1,1,0]-cut

Fig. 20 The component associated with the cut-vector [2, 2, 0, 2, 0, 0, 1]

A

[2 ,2 ,1 ,1 ,1 ,0 ,0]-cut

=⇒

[2 ,1 ,1 ,0 ,0 ,1]-cut

or

[2 ,1 ,1 ,0 ,1 ,1]-cut

Fig. 21 The component associated with the cut-vector [2, 2, 1, 1, 1, 0, 0]

able configuration, due to a cut with the cut-vector [2, 0, 1, 1, 0, 1]. For A hexagonal
a nanotubical cut with the cut-vector [2, 0, 1, 1, 1, 1] is obtained; it is contained in a
nanotube of type (5, 1).

[2,2,0,2,0,0,1]: Analogously, if the face A from Fig. 20, is pentagonal, we once again
obtain a non-realizable cut-vector [2, 2, 0, 1, 0, 0]. If A is hexagonal, a non-degener-
ate cyclic 6-edge-cut with the cut-vector [2, 2, 0, 1, 1, 0] is obtained. This cut is not
nanotubical, however, by Theorem 3 it is contained in a nanotube with p1 + p2 ≤ 6.
It is easy to see that it occurs in nanotubes of type (5, 0) with at least two layers of
hexagons.

[2,2,1,1,1,0,0]: If the face A from Fig. 21, is pentagonal, we obtain a degenerate
cyclic 6-edge-cut with a cut-vector [2, 1, 1, 0, 0, 1] which is non-realizable. If A is
hexagonal, we obtain a nanotubical cut with a cut-vector [2, 1, 1, 0, 1, 1]. It is con-
tained in a nanotube of type (3, 3). Since the original cut is non-degenerate, the six
hexagons cut by the new 6-edge-cut are not surrounded by pentagons only. Therefore,
the graph is not the exceptional one shown in Fig. 10.
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A

[2 ,2 ,1 ,1 ,0 ,0 ,1]-cut

=⇒

[2 ,2 ,1 ,0 ,0 ,0]-cut

or

[2 ,2 ,1 ,0 ,1 ,0]-cut

Fig. 22 The component associated with the cut-vector [2, 2, 1, 1, 0, 0, 1]

A

[2 ,1 ,2 ,1 ,1 ,0 ,0]-cut

=⇒

[2 ,1 ,0 ,0 ,1 ,1]-cut

or

[2 ,1 ,0 ,1 ,1 ,1]-cut

Fig. 23 The components associated with the cut-vector [2, 1, 2, 1, 1, 0, 0]

A

[2, 1, 2, 1, 0, 0, 1]-cut

=⇒

[2, 1, 2, 0, 0, 0]-cut

or

[2, 1, 2, 0, 1, 0]-cut

Fig. 24 The component associated with the cut-vector [2, 1, 2, 1, 0, 0, 1]

[2,2,1,1,0,0,1]: Consider the face A from Fig. 22. If A is pentagonal, we obtain a
degenerate 6-edge-cut with the cut-vector [2, 2, 1, 0, 0, 0], which is non-realizable. If
A is hexagonal, we obtain a non-degenerate 6-edge-cut, which by Theorem 3 can only
occur in nanotubes. However, it can be easily checked that it is non-realizable, too,
since it leads to a nanotube of type (4, 1), which does not exist.

[2,1,2,1,1,0,0]: Consider the face A from Fig. 23. If it is pentagonal, we obtain a
cut with the cut-vector [2, 1, 0, 0, 1, 1], which is non-realizable by Theorem 2. If the
face A is hexagonal, we obtain a cut with a nanotubical cut-vector [2, 1, 0, 1, 1, 1]; it
occurs in nanotubes of type (4, 2).

[2,1,2,1,0,0,1]: Consider the face A from Fig. 24. If A is pentagonal, we obtain
a degenerate 6-edge-cut with the cut-vector [2, 1, 2, 0, 0, 0], which is non-realiz-
able. If A is hexagonal, we obtain a non-degenerate 6-edge-cut with the cut-vector
[2, 1, 2, 0, 1, 0], which must be contained in a nanotube. However, it can only appear
in a nanotube of type (5, 0) with at least two layers of hexagons.

[2,1,1,2,1,0,0]: Consider the face A from Fig. 25. If it is pentagonal, we obtain a cut
with the cut-vector [2, 0, 0, 1, 1, 1], which is non-realizable by Theorem 2. If the face
A is hexagonal, we obtain a cut with the cut-vector [2, 0, 1, 1, 1, 1] appearing only in
nanotubes of type (5, 1).

[2,1,2,1,0,1,0]: Consider the face A from Fig. 26. If A is pentagonal, we obtain a
degenerate 7-edge-cut with a component of five pentagons and some hexagons, with
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A

[2, 1, 1, 2, 1, 0, 0]-cut

=⇒

[2, 0, 0, 1, 1, 1]-cut

or

[2, 0, 1, 1, 1, 1]-cut

Fig. 25 The components associated with the cut-vector [2, 1, 1, 2, 1, 0, 0]

A

[2, 1, 2, 1, 0, 1, 0]-cut

=⇒

[2, 1, 2, 0, 1, 0, 0]-cut

or

[2, 1, 2, 0, 2, 0, 0]-cut

Fig. 26 The component associated with the cut-vector [2, 1, 2, 1, 0, 1, 0]

A

[2, 1, 1, 1, 2, 0, 0]-cut

=⇒
[1, 1, 1, 1, 1, 1]-cut

or

[0, 1, 1, 1, 1, 1]-cut

Fig. 27 The component associated with the cut-vector [2, 1, 1, 1, 2, 0, 0]

A BC D

[0,1,1,1,0,2,2]-cut exceptional fullerene [4 ,3]-nanotube

Fig. 28 The components associated with the cut-vector [0, 1, 1, 1, 0, 2, 2]: the general situation and the
cases when only A or B is pentagonal

the cut-vector [2, 1, 2, 0, 1, 0, 0], which is non-realizable, since no degenerate 7-edge-
cut in Table 1 has such a cut-vector. If A is hexagonal, we obtain a non-degenerate
7-edge-cut with the cut-vector [2, 1, 2, 0, 2, 0, 0], which has already been considered
and leads to nanotubes of type (5, 1).

[2,1,1,1,2,0,0]: Here we consider two subcases, starting with the case that A is
hexagonal. In this case we obtain a 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1]
(see Fig. 27), which occurs on nanotubes of type (6, 0). Since the original cut is non-
degenerate, the six hexagons cut by the new 6-edge-cut are not surrounded only by
pentagons on both sides. Therefore, the graph G is not in Fig. 10.

In the latter case A is pentagonal. We obtain a degenerate 6-edge-cut with the
cut-vector [0, 1, 1, 1, 1, 1]. By Theorem 2, we know that there exists precisely one
configuration with such a cut. It is composed of five pentagons and one hexagon,
which is by the component with 0 value in the cut. We obtain the left configura-
tion from Fig. 28. Obviously, it is realizable and it does not have to be nanotubical,
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Fig. 29 The graph obtained
from the cut-vector
[0, 1, 1, 1, 0, 2, 2] in the case
two of the faces A, B, C , D are
pentagonal

exceptional fullerene

A B

[2, 1, 1, 2, 0, 1, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut [2, 1, 1, 1, 2, 0, 0]-cut

Fig. 30 The components associated with the cut-vector [2, 1, 1, 2, 0, 1, 0]

so we have to consider the other part of the graph, the complement of the original
cut-vector—[0, 1, 1, 1, 0, 2, 2].

Consider the faces A, B, C and D in Fig. 28. We distinguish cases regarding
their sizes. Notice that in all cases we obtain a cut whose cut-vector has two con-
secutive coordinates with value 1. When all four faces are hexagonal, we obtain
a nanotubical 6-edge-cut with the cut-vector [1, 1, 1, 1, 1, 1]. When at least one
of them is pentagonal, a degenerate cut is obtained. By Theorem 2 and the fact
that there are two consecutive 1’s in the cut-vector of the cut passing the faces A,
B, C , D, and the two topmost hexagons drawn in the same figure it follows that
either one or two faces are pentagonal. When only one of the faces is pentago-
nal, we consider two subcases, due to the symmetry, either A is pentagonal or B is
pentagonal.

If the face A is pentagonal, we obtain a 6-cut with the cut-vector [0, 1, 1, 1, 1, 1],
which is uniquely realizable by configuration 6D07 of Fig. 4. We obtain the middle
graph drawn in Fig. 28, which is isomorphic to the left graph of Fig. 11. It has no
nanotubical cut, so this fullerene is not a nanotube.

Similarly, if the face B is pentagonal, we again obtain a 6-cut with the cut-vector
[0, 1, 1, 1, 1, 1], which is uniquely realizable. We get the right graph drawn in Fig. 28,
where its nanotubical cut is presented. It is a nanotube of type (4, 3).

In the latter case precisely two of the faces A, B, C and D are pentagonal. We
obtain a degenerate cut with four 5-faces in the interior. The only such configuration
has the cut-vector [1, 1, 0, 1, 1, 0]. Notice that between the 0 components are two
1’s. That infers the pentagonal faces are A and D, since there must be exactly two
hexagons between the pentagons. This configuration is also realizable. We obtain the
graph depicted in Fig. 29, which is isomorphic to the right graph of Fig. 11. It is not
a nanotube, as it has no nanotubical cut.

[2,1,1,2,0,1,0]: Consider the faces A and B of Fig. 30. If both of them are hexago-
nal, we obtain a nanotubical cut with the cut-vector [1, 1, 1, 1, 1, 1]. If at least one of
them is pentagonal, we obtain a degenerate cut with the cut-vector having three con-
secutive 1’s. The only degenerate cut with the cut-vector having three consecutive 1’s
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has five pentagons in the interior, so exactly one of the faces A and B is pentagonal. In
that case, we can always find a cut with the cut-vector [2, 1, 1, 1, 2, 0, 0], see Fig. 30.
Therefore, we deal only with configurations considered in the previous case.
This proves the theorem. ��
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